3.31 \(\int (a+a \cos (c+d x))^4 (A+B \cos (c+d x)) \sec (c+d x) \, dx\)

Optimal. Leaf size=151 \[ \frac{5 a^4 (8 A+7 B) \sin (c+d x)}{8 d}+\frac{(4 A+7 B) \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{12 d}+\frac{(32 A+35 B) \sin (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{24 d}+\frac{1}{8} a^4 x (48 A+35 B)+\frac{a^4 A \tanh ^{-1}(\sin (c+d x))}{d}+\frac{a B \sin (c+d x) (a \cos (c+d x)+a)^3}{4 d} \]

[Out]

(a^4*(48*A + 35*B)*x)/8 + (a^4*A*ArcTanh[Sin[c + d*x]])/d + (5*a^4*(8*A + 7*B)*Sin[c + d*x])/(8*d) + (a*B*(a +
 a*Cos[c + d*x])^3*Sin[c + d*x])/(4*d) + ((4*A + 7*B)*(a^2 + a^2*Cos[c + d*x])^2*Sin[c + d*x])/(12*d) + ((32*A
 + 35*B)*(a^4 + a^4*Cos[c + d*x])*Sin[c + d*x])/(24*d)

________________________________________________________________________________________

Rubi [A]  time = 0.412612, antiderivative size = 151, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.172, Rules used = {2976, 2968, 3023, 2735, 3770} \[ \frac{5 a^4 (8 A+7 B) \sin (c+d x)}{8 d}+\frac{(4 A+7 B) \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{12 d}+\frac{(32 A+35 B) \sin (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{24 d}+\frac{1}{8} a^4 x (48 A+35 B)+\frac{a^4 A \tanh ^{-1}(\sin (c+d x))}{d}+\frac{a B \sin (c+d x) (a \cos (c+d x)+a)^3}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^4*(A + B*Cos[c + d*x])*Sec[c + d*x],x]

[Out]

(a^4*(48*A + 35*B)*x)/8 + (a^4*A*ArcTanh[Sin[c + d*x]])/d + (5*a^4*(8*A + 7*B)*Sin[c + d*x])/(8*d) + (a*B*(a +
 a*Cos[c + d*x])^3*Sin[c + d*x])/(4*d) + ((4*A + 7*B)*(a^2 + a^2*Cos[c + d*x])^2*Sin[c + d*x])/(12*d) + ((32*A
 + 35*B)*(a^4 + a^4*Cos[c + d*x])*Sin[c + d*x])/(24*d)

Rule 2976

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])
^(n + 1))/(d*f*(m + n + 1)), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x]
)^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*S
in[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&
NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int (a+a \cos (c+d x))^4 (A+B \cos (c+d x)) \sec (c+d x) \, dx &=\frac{a B (a+a \cos (c+d x))^3 \sin (c+d x)}{4 d}+\frac{1}{4} \int (a+a \cos (c+d x))^3 (4 a A+a (4 A+7 B) \cos (c+d x)) \sec (c+d x) \, dx\\ &=\frac{a B (a+a \cos (c+d x))^3 \sin (c+d x)}{4 d}+\frac{(4 A+7 B) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{12 d}+\frac{1}{12} \int (a+a \cos (c+d x))^2 \left (12 a^2 A+a^2 (32 A+35 B) \cos (c+d x)\right ) \sec (c+d x) \, dx\\ &=\frac{a B (a+a \cos (c+d x))^3 \sin (c+d x)}{4 d}+\frac{(4 A+7 B) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{12 d}+\frac{(32 A+35 B) \left (a^4+a^4 \cos (c+d x)\right ) \sin (c+d x)}{24 d}+\frac{1}{24} \int (a+a \cos (c+d x)) \left (24 a^3 A+15 a^3 (8 A+7 B) \cos (c+d x)\right ) \sec (c+d x) \, dx\\ &=\frac{a B (a+a \cos (c+d x))^3 \sin (c+d x)}{4 d}+\frac{(4 A+7 B) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{12 d}+\frac{(32 A+35 B) \left (a^4+a^4 \cos (c+d x)\right ) \sin (c+d x)}{24 d}+\frac{1}{24} \int \left (24 a^4 A+\left (24 a^4 A+15 a^4 (8 A+7 B)\right ) \cos (c+d x)+15 a^4 (8 A+7 B) \cos ^2(c+d x)\right ) \sec (c+d x) \, dx\\ &=\frac{5 a^4 (8 A+7 B) \sin (c+d x)}{8 d}+\frac{a B (a+a \cos (c+d x))^3 \sin (c+d x)}{4 d}+\frac{(4 A+7 B) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{12 d}+\frac{(32 A+35 B) \left (a^4+a^4 \cos (c+d x)\right ) \sin (c+d x)}{24 d}+\frac{1}{24} \int \left (24 a^4 A+3 a^4 (48 A+35 B) \cos (c+d x)\right ) \sec (c+d x) \, dx\\ &=\frac{1}{8} a^4 (48 A+35 B) x+\frac{5 a^4 (8 A+7 B) \sin (c+d x)}{8 d}+\frac{a B (a+a \cos (c+d x))^3 \sin (c+d x)}{4 d}+\frac{(4 A+7 B) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{12 d}+\frac{(32 A+35 B) \left (a^4+a^4 \cos (c+d x)\right ) \sin (c+d x)}{24 d}+\left (a^4 A\right ) \int \sec (c+d x) \, dx\\ &=\frac{1}{8} a^4 (48 A+35 B) x+\frac{a^4 A \tanh ^{-1}(\sin (c+d x))}{d}+\frac{5 a^4 (8 A+7 B) \sin (c+d x)}{8 d}+\frac{a B (a+a \cos (c+d x))^3 \sin (c+d x)}{4 d}+\frac{(4 A+7 B) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{12 d}+\frac{(32 A+35 B) \left (a^4+a^4 \cos (c+d x)\right ) \sin (c+d x)}{24 d}\\ \end{align*}

Mathematica [A]  time = 0.372112, size = 138, normalized size = 0.91 \[ \frac{a^4 \left (24 (27 A+28 B) \sin (c+d x)+24 (4 A+7 B) \sin (2 (c+d x))+8 A \sin (3 (c+d x))-96 A \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )+96 A \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )+576 A d x+32 B \sin (3 (c+d x))+3 B \sin (4 (c+d x))+420 B d x\right )}{96 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^4*(A + B*Cos[c + d*x])*Sec[c + d*x],x]

[Out]

(a^4*(576*A*d*x + 420*B*d*x - 96*A*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + 96*A*Log[Cos[(c + d*x)/2] + Sin[
(c + d*x)/2]] + 24*(27*A + 28*B)*Sin[c + d*x] + 24*(4*A + 7*B)*Sin[2*(c + d*x)] + 8*A*Sin[3*(c + d*x)] + 32*B*
Sin[3*(c + d*x)] + 3*B*Sin[4*(c + d*x)]))/(96*d)

________________________________________________________________________________________

Maple [A]  time = 0.105, size = 199, normalized size = 1.3 \begin{align*}{\frac{A\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}{a}^{4}}{3\,d}}+{\frac{20\,A{a}^{4}\sin \left ( dx+c \right ) }{3\,d}}+{\frac{{a}^{4}B\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{3}}{4\,d}}+{\frac{27\,{a}^{4}B\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) }{8\,d}}+{\frac{35\,{a}^{4}Bx}{8}}+{\frac{35\,{a}^{4}Bc}{8\,d}}+2\,{\frac{A{a}^{4}\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) }{d}}+6\,A{a}^{4}x+6\,{\frac{A{a}^{4}c}{d}}+{\frac{4\,B\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}{a}^{4}}{3\,d}}+{\frac{20\,{a}^{4}B\sin \left ( dx+c \right ) }{3\,d}}+{\frac{A{a}^{4}\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^4*(A+B*cos(d*x+c))*sec(d*x+c),x)

[Out]

1/3/d*A*sin(d*x+c)*cos(d*x+c)^2*a^4+20/3/d*A*a^4*sin(d*x+c)+1/4/d*a^4*B*sin(d*x+c)*cos(d*x+c)^3+27/8/d*a^4*B*c
os(d*x+c)*sin(d*x+c)+35/8*a^4*B*x+35/8/d*a^4*B*c+2/d*A*a^4*cos(d*x+c)*sin(d*x+c)+6*A*a^4*x+6/d*A*a^4*c+4/3/d*B
*sin(d*x+c)*cos(d*x+c)^2*a^4+20/3/d*a^4*B*sin(d*x+c)+1/d*A*a^4*ln(sec(d*x+c)+tan(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 1.01195, size = 267, normalized size = 1.77 \begin{align*} -\frac{32 \,{\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} A a^{4} - 96 \,{\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} A a^{4} - 384 \,{\left (d x + c\right )} A a^{4} + 128 \,{\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} B a^{4} - 3 \,{\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} B a^{4} - 144 \,{\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} B a^{4} - 96 \,{\left (d x + c\right )} B a^{4} - 96 \, A a^{4} \log \left (\sec \left (d x + c\right ) + \tan \left (d x + c\right )\right ) - 576 \, A a^{4} \sin \left (d x + c\right ) - 384 \, B a^{4} \sin \left (d x + c\right )}{96 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^4*(A+B*cos(d*x+c))*sec(d*x+c),x, algorithm="maxima")

[Out]

-1/96*(32*(sin(d*x + c)^3 - 3*sin(d*x + c))*A*a^4 - 96*(2*d*x + 2*c + sin(2*d*x + 2*c))*A*a^4 - 384*(d*x + c)*
A*a^4 + 128*(sin(d*x + c)^3 - 3*sin(d*x + c))*B*a^4 - 3*(12*d*x + 12*c + sin(4*d*x + 4*c) + 8*sin(2*d*x + 2*c)
)*B*a^4 - 144*(2*d*x + 2*c + sin(2*d*x + 2*c))*B*a^4 - 96*(d*x + c)*B*a^4 - 96*A*a^4*log(sec(d*x + c) + tan(d*
x + c)) - 576*A*a^4*sin(d*x + c) - 384*B*a^4*sin(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 1.81413, size = 306, normalized size = 2.03 \begin{align*} \frac{3 \,{\left (48 \, A + 35 \, B\right )} a^{4} d x + 12 \, A a^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 12 \, A a^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) +{\left (6 \, B a^{4} \cos \left (d x + c\right )^{3} + 8 \,{\left (A + 4 \, B\right )} a^{4} \cos \left (d x + c\right )^{2} + 3 \,{\left (16 \, A + 27 \, B\right )} a^{4} \cos \left (d x + c\right ) + 160 \,{\left (A + B\right )} a^{4}\right )} \sin \left (d x + c\right )}{24 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^4*(A+B*cos(d*x+c))*sec(d*x+c),x, algorithm="fricas")

[Out]

1/24*(3*(48*A + 35*B)*a^4*d*x + 12*A*a^4*log(sin(d*x + c) + 1) - 12*A*a^4*log(-sin(d*x + c) + 1) + (6*B*a^4*co
s(d*x + c)^3 + 8*(A + 4*B)*a^4*cos(d*x + c)^2 + 3*(16*A + 27*B)*a^4*cos(d*x + c) + 160*(A + B)*a^4)*sin(d*x +
c))/d

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**4*(A+B*cos(d*x+c))*sec(d*x+c),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.2994, size = 289, normalized size = 1.91 \begin{align*} \frac{24 \, A a^{4} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) - 24 \, A a^{4} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) + 3 \,{\left (48 \, A a^{4} + 35 \, B a^{4}\right )}{\left (d x + c\right )} + \frac{2 \,{\left (120 \, A a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} + 105 \, B a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} + 424 \, A a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 385 \, B a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 520 \, A a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 511 \, B a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 216 \, A a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 279 \, B a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )}^{4}}}{24 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^4*(A+B*cos(d*x+c))*sec(d*x+c),x, algorithm="giac")

[Out]

1/24*(24*A*a^4*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 24*A*a^4*log(abs(tan(1/2*d*x + 1/2*c) - 1)) + 3*(48*A*a^4
+ 35*B*a^4)*(d*x + c) + 2*(120*A*a^4*tan(1/2*d*x + 1/2*c)^7 + 105*B*a^4*tan(1/2*d*x + 1/2*c)^7 + 424*A*a^4*tan
(1/2*d*x + 1/2*c)^5 + 385*B*a^4*tan(1/2*d*x + 1/2*c)^5 + 520*A*a^4*tan(1/2*d*x + 1/2*c)^3 + 511*B*a^4*tan(1/2*
d*x + 1/2*c)^3 + 216*A*a^4*tan(1/2*d*x + 1/2*c) + 279*B*a^4*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 + 1)
^4)/d